En mathématiques récréatives, un nombre parasite est un entier naturel qui, lorsqu'il est multiplié par un certain nombre entier n compris entre 2 et 9, voit sa représentation décimale inchangée, excepté pour le chiffre des unités qui est déplacé en début d'écriture. Un tel nombre est dit « n-parasite ».
Exemples
Pour n de 2 à 9, la table suivante donne les plus petits nombres n-parasites, ou « nombres de Dyson » :
Recherche
La méthode suivante permet de trouver un nombre n-parasite. Soit m l'ordre multiplicatif de 10 dans l'anneau ℤ/(10n – 1)ℤ, c’est-à-dire le plus petit entier m > 0 tel que 10m ≡ 1 (mod 10n – 1)). Alors est un nombre n-parasite.
Par exemple, si n = 4, 10n – 1 = 39 et m = 6 ; l'écriture en décimale récurrente de 1/39 est 0,025641... et 106×(1/39) = 25 641,025641... = 25641 1/39. On obtient 25 641 = 106×(1/39) – 1/39 = (106 – 1)/39. Le nombre 4×25 641 = 102 564 est 4-parasite.
Cette méthode ne donne pas le plus petit nombre n-parasite pour n = 5 (elle donne 1 020 408 163 265 030 612 244 897 959 183 673 469 387 755 au lieu de 142 857).
Référence
Bibliographie
(en) C. A. Pickover, Wonders of Numbers, Oxford University Press, 2003 (ISBN 978-0-19-515799-4), chap. 80, aperçu sur Google Livres
- Arithmétique et théorie des nombres




